運営 | 個人による (日本) |
プロジェクト内容 | b^8192+1において、bの値が1億以上の一般フェルマー素数を探す。(記述:2004-09-26) |
対応OS | Linux。CYGWINをインストールしてパスを設定すれば、Windowsで動作可能。(追記:2004-11-09) |
備考 | Yves GALLOT氏作成のGFN 素数探索プログラムのソースと D.J.Bernstein 氏作成のFFTプログラムのソースをベースに、通信機能を追加。 GeneFer -d 'user id'で、分散処理モードとして機能。(記述:2004-09-26) |
運営 | 個人による (日本) |
プロジェクト内容 | k*2^n+1において、kの値が47であると素数出現率がとても低い。その一方、ふるいがけすると非常に少ない候補数に絞れる特徴があり、nを増やしていく探索では効率が良いため47*2^n+1の形での素数探索を行う。(記述:2004-07-25) k=9の探索も開始。k=29も開始予定。(追記:2004-08-15) |
対応OS | WindowsなどPRPを走らせられるプラットホーム。 |
備考 | プロジェクトは手動で掲示板で解析表明を行い、PRPによる解析終了後、ファイルを添付して掲示板にアップする必要が。(追記:2004-07-25) 探索結果は合成数であったものも含めてProth primes pageに登録され全世界に共有されると表明。(追記:2004-07-25) |
日本語での情報 | 47*2^n+1 Searchに参加するには - 基本的な参加方法を手順を追って紹介。 |
運営 | 徳島大学工学部知能情報工学科・森井研究室 |
プロジェクト内容 | Generalized Fermat Prime(一般化フェルマー素数 a^[2^b]+1)から100万桁の素数を探す。a^[2^17]+1において、aの値を42598522から順次増やしていく形で探索。(追記:2004.1.4) プロジェクトを一時中断。クライアントプログラム・システムの全面改定,素数判定方法に関する説明を行った上で再度、近々に再開予定。(追記:2004-07-01) |
対応OS | Windows。JRE(Javaのランタイム環境モジュール)が必要。JREダウンロード日本語サイトは2003-01-05時点では機能しておらず、ダウンするJREは多言語版のみなので英文ページからどうぞ。 |
備考 | Web上にて、簡易な登録をすませる必要が。(記述:2004.1.3) 現在自分が解析している数は、JFフォルダ内のpin.txtを見ることで理解可能。pin.txtには「4260**** 131072」といった形で記載されていますが、131072=2^17。そしてpin.txt冒頭左側の4260****がaの値です。自分が今挑んでいる数値の桁数はこのような形(+小数点切り上げ)で理解可能です。42601234の部分に、割り当てられているpin.txt冒頭の数値を入れてください。(追記:2004.1.4) |
運営 | 個人による (日本) |
プロジェクト内容 | 円分数(N = Φn(x) )の素因数分解を行う。(記述修正:2001.10.1) |
対応OS | DOSプロンプトをメインにWindows,Linux... |
備考 | 自ら分解する対象の数をファイルに書き込み、新しい素因数が見つかれば、手動でメール送信を行う必要が。 |
運営 | 個人による (日本) |
プロジェクト内容 | 円周率を求める。(記述:2005-03-20) |
対応OS | ブラウザで閲覧しているだけで、演算に参加。 |
日本での報道 | ・ウェブページを開くだけでπを分散コンピューティング(slashdot日本 2005-03-20) |
運営 | 任意団体でしたが、既に非営利団体として登録済の模様。 |
プロジェクト内容 | 巨大なメルセンヌ素数(2p-1,pは素数。の解が素数の数)の発見 |
賞金 | 電子フロンティア財団(Electronic Frontier Foundation)は1000万桁の素数を発見した最初のグループ又は個人に10万ドルの賞金を出すと発表。 が、参加者がこのプロジェクトでもらえるのは現状では50000ドル程になる模様。(記述修正:2003.6.11) しかし、1000万桁に届かなくても新たなメルセンヌ素数発見者には最大5000ドル。 |
形式 | タスクトレイ常駐型,アプリケーションソフト。Entropia社のシステムを使用 |
対応OS | Windows,Linux,FreeBSD,OS/2,DOS,MacOS(も、あったはず) |
備考 | 既に200万桁の素数を発見し、2000年4月6日、電子フロンティア財団から50000ドルを獲得。 1000万桁の数を一つ調べるのにPentium3-500Mhzで丸々1年かかり、成功確率は約25万分の1と運営者側は忠告。(記述:2001.6.9) |
日本語での情報 | GIMPS情報サイト設置。 ・分散コンピューティングで素数探しコンテスト (WIRED 1999.3.31) ・分散コンピューティングのGIMPSプロジェクトが405万桁の新素数を発見 (impressWatch 2001.12.10) ・「最大の素数」見つかる(ZDNet 2003-12-03) - 632万0430桁。6万人が参加。 ・[Book] 素数大百科(bk1) - 素数情報サイトThe Prime Pagesを編纂・翻訳。GIMPS直前からの巨大メルセンヌ素数発見の記録に一項目割き、詳細に記述。Seventeen or Bustに関しても記述。 |
運営 | 個人による模様 |
プロジェクト内容 | ダブルメルセンヌ数2^(2^61-1)-1が素数か確認する。(記述:2002.1.7) |
対応OS | Windows(MS-DOS),Linux (ソースコード付) |
形式 | コマンドライン,解析データの送受信はメールによる手動の模様 |
運営 | 個人による |
プロジェクト内容 | Prothの定理を使って様々な数(Cullen素数,Woodall素数等、主に素数)を見つける。(記述:2001.6.28) |
形式 | アプリケーションソフト |
対応OS | Windows |
備考 | 一つのクライアントソフトで様々に手動で入力することで対応できる模様。送信も手動だが、予め計算範囲を予約できる模様。 |
運営 | 個人による模様 |
プロジェクト内容 | k.2n-1の素数を探す。(記述:2002.4.5) |
形式 | アプリケーションソフト |
対応OS | Windows |
備考 | 予め計算範囲を予約する模様。 |
運営 | 個人による |
プロジェクト内容 | 世界最大の、2n > kである場合k.2n+1の素数というProth素数を探す。(記述:2002.5.24) |
形式 | タスクトレイ常駐型,アプリケーションソフト |
対応OS | Windows,Linux (クライアントソフトには、GIMPSのGeorge Woltman氏制作のPRPを使用) |
備考 | 要600MHz以上のPC。CPUタイプとスピードをメールで手動送信後、input.txtファイルをもらう必要が。 |
運営 | 個人による |
プロジェクト内容 | x個飛ばしの階乗n!(x+1)±1(n!3なら2つ飛ばしの階乗。例:7!3 = 7!!! = 7*(7-2)*(5-2)*(3-2) = 7*5*3*1 )の中から素数を探す。(記述:2003.8.29) |
対応OS | Windows,Linux |
備考 | メールで連絡を取る必要性が。クライアントソフトのダウンロードのために米Yahoo!Groupsに登録する必要が。(記述:2003.8.29) |
運営 | 個人2名による |
プロジェクト内容 | 「k*2n+1において、kは特定の値で、nにどの値を入れても合成数(素数でない数)なら、その数kはシェルピンスキー数である。最小のシェルピンスキー数は何か?」というシェルピンスキー問題に挑戦するため、シェルピンスキー数の候補として残っている17個の数字をkに代入し、素数を探す。(記述:2002.8.14) |
形式 | タスクトレイ常駐型,アプリケーションソフト |
対応OS | Windows,Linux,FreeBSD,BeOS |
備考 | 残っている17個の数字は、4847, 5359, 10223, 19249, 21181, 22699, 24737, 27653, 28433, 33661, 44131, 46157, 54767, 55459, 65567, 67607, 69109。 210186桁・26番目に大きい素数(Proth素数では6番目)46157*2^698207+1を発見。これにより46157はシェルピンスキー数でないことが確かめられる。(記述:2002.12.3) 305190桁・21番目に大きい素数(Proth素数では3番目)65567*2^1013803+1発見。(追記:2002.12.4) 299823桁・23番目に大きい素数44131*2^995972+1発見。(追記:2002.12.7) 348431桁・17番目に大きな素数69109*2^1157446+1発見。(追記:2002.12.11) 402569桁・8番目に大きな素数54767*2^1337287+1発見。(追記:2002.12.26) Pentium4あるいはSSE2命令を使う他のシステムでは、v1.11にVerUpを要請。(追記:2003.11.06) 152万1561桁・世界4位の大きさの素数5359*2^5054502+1発見。(追記:2003.12.16) |
運営 | 個人による模様 |
プロジェクト内容 | 最小のシェルピンスキー素数を見つける。k*2n+1において、kは特定の値で、nにどの値を入れても合成数(素数でない数)なら、その数kはシェルピンスキー数。現在判明している最小のシェルピンスキー素数はk=271129。 k < 271129の全ての数で素数を発見すれば、k=271129が最小のシェルピンスキー素数であることを証明するのに充分であろう。残っているkの候補は22個。(記述:2004-05-15) |
形式 | タスクトレイ常駐型,アプリケーションソフト |
対応OS | Windows |
備考 | 2004年3月22日までに10個の素数を発見。一部は素数Top100にランク入り。 ユーザー名を登録する場合は、llr-clientconfig.txtを書き換える必要が。(記述:2004-05-15) |
運営 | 個人による |
プロジェクト内容 | いまだ素数が発見されていないk+2n(kは固定)の整数の連続から素数を見つけることに挑戦する。(多分)(記述:2002.7.25) |
形式 | タスクトレイ常駐型,アプリケーションソフト |
対応OS | Windows,Linux (クライアントソフトには、GIMPSのGeorge Woltman氏制作のPRPを使用) |
備考 | 調べる数の予約・結果の提出のために、メールでやりとりする必要が。 |
運営 | 個人による模様 |
プロジェクト内容 | 「k*2n-1において、nにどの値を入れても合成数(素数でない数)なら、その数はRiesel数である。最小のRiesel数はk = 509203である」というRiesel conjectureを、素数候補を取り除くことで証明する。(多分)(記述:2003-12-25) |
形式 | アプリケーションソフトの模様。手動入力。 |
対応OS | Windows,Linux |
備考 | 数の予約をする必要がある模様。(記述:2003-12-25) 261221*2^689422-1の素数発見。(記述:2003-12-25) 246299*2^752600-1の素数発見。(追記:2004-01-26) |
運営 | 個人による模様 |
プロジェクト内容 | 巨大なフェルマー数(22^n+1)のより普遍的な形(k2^n+1)からの素数の発見 (記述修正:2003.1.31) |
賞金 | 電子フロンティア財団(Electronic Frontier Foundation)は1000万桁の素数を発見した最初のグループ又は個人に10万ドルの賞金を出すと発表。 しかしプロジェクト運営者は、賞金をかけることに否定的で、見つかれば賞金は全て発見者に。 |
形式 | アプリケーションソフトですが、Javaアプレットでweb上でも体験可能。 |
対応OS | Windows,Linux |
備考 | 探索する範囲の数値入力等は手動,クライアントソフトは他者制作の物を使う模様。 nが5以上のフェルマー数は、合成数(素数でない数)しか見つかっておらず、5以上のフェルマー数は全て合成数という意見も大きいようです。そのためより普遍的な形から探しています。(記述修正:2003.11.8) 2003年1月6日、フェルマー数ではありませんが1483076^65536+1 (404434桁)の素数を発見(追記:2003.2.5) 62722^131072+1(628808桁)の素数発見(追記:2003.2.17) 2003年3月26日、357868^65536+1(363969桁)の素数発見。 素数探索は素晴らしいが、自分達が文明の頂点であると考え、脅威で無い人々を故意に殺し彼らの都市を瓦礫と化す若干の者達の振る舞いによって、その素晴らしさは影を投げかけられる。と、戦争中は探索を一時中止。探索の継続を求めるなら、戦争を止めさせることに寄与して下さいと表明(現在、原文は多少変更)。現在ダウンロード,statsなど利用不可。ただし探索の数値は手動入力のため、既存参加者は解析結果の送信・解析候補の予約は無理でも、解析自体の継続は可能な模様。(追記:2003.3.30) 「戦争は終わった」と、再び素数の探索を開始(追記:2003.4.20) |
運営 | 個人による模様 |
プロジェクト内容 | Emirp数(回文素数。左から読んでも右から読んでも素数)を探す。このプロジェクトでは求めるEmirp数に左右対象性(例:13と31)は求めない。(記述:2003.9.21) データの処理に問題があったとプロジェクト停止を発表。再開の可能性は低いと記載。(追記:2003.10.13) |
対応OS | Windows |
運営 | 3名の個人による |
プロジェクト内容 | 特殊数体ふるい法により巨大な数の素因数を求める。(記述:2002.11.6) |
対応OS | Windows,Linux(x86)。MacOSX,FreeBSDもテスト中。 |
備考 | 現在ベータテスト中。 2003年2月25日、11^197+1(206桁)の因数分解を完了。76桁と85桁の素因数を発見。(記述:2003.3.6) 2^673-1(203桁)と12^178+1(193桁)の因数分解完了。(追記:2003.3.24) リリース候補がダウンロード・使用可能に。NfsnetInit.exeでユーザー登録を行ってから、nfsGUIで起動させる必要が(Win版)。(追記:2003.5.13) |
運営 | PerlBOINC communityの協力の下、個人による模様。 |
プロジェクト内容 | PerlBOINCのテストも兼ねて、RSA-640(193桁)の因数分解に挑戦する。(記述:2005-10-01) |
対応OS | boincを使用。 |
賞金 | RSA社はRSA-640の素因数分解に20000ドルの賞金を提示。PrimeGrid側は解読成功時の賞金に関する記述は見あたらず。(記述:2005-10-01) |
備考 | 2005年10月時点では、事前登録のみで、利用可能なれば通知するとのこと。(記述:2005-10-01) |
運営 | 個人による模様 |
プロジェクト内容 | x^y + y^x の因数を求める。xとyの値の範囲は、1 < y < x < 151。(記述:2004.3.17) |
備考 | 因数分解ソフトを各自で準備し手動で予約し走らせる。海外の情報サイトIDCPによると、ECMclientを使う場合は、サーバのアドレスとポート番号を入力すれば、自動予約・自動提出も可能な模様。(記述:2004.3.17) |
運営 | 個人による模様 |
プロジェクト内容 | ECM(楕円曲線法)により、2^3326400-1の因数を探す (記述:2003.10.5) |
対応OS | Windows |
備考 | ecmclient.cfgをエディタ(メモ帳など)で書き換える必要が。 |
運営 | 個人による。 多言語化は他の方々によって |
プロジェクト内容 | フェルマー数(22^n+1)の因数を探す(記述:2001.6.11) |
対応OS | Windows,Linux,MS-DOS |
備考 | フェルマー数F8298(2^2^8298)を1054057*2^8300+1で割ることに成功。今年8個目。(記述:2003.12.6) |
運営 | 個人による。 |
プロジェクト内容 | n=<1000でk=3,5,7,9および11の場合の上記の形式をした数の素因数分解を行う(記述:2004.3.25) |
対応OS | Windows,Linux |
備考 | webフォームから手動で予約・登録を行う模様。(記述:2004.3.25) |
運営 | 個人による |
プロジェクト内容 | ドイツの15122の都市で巡回セールスマン問題(セールスマンが決められた都市を回り、全ての都市を巡って起点に戻る、最も効率的な道順を探すという問題)を遺伝的アルゴリズム(生物の遺伝と進化のメカニズムをモデル化した確率的探索・学習・最適化の手法)を使って解く。(記述:2001.10.16) |
形式 | Javaを使ったWebベース |
対応OS | Javaプラグインをサポートするブラウザが走る環境。JRE(Javaのランタイム環境モジュール)が必要な場合も。 |
賞金 | 出ないようですが、この問題における現最高記録であるプリンストン大学とライス大学の共同による15112都市での記録を塗り替えることが。 |
備考 | 現在、プロジェクトサイトは見当たらず、プロジェクトがどうなったのか不明。(海外の情報サイトIDCPでも不明と記載)(記述:2004.1.30) |
運営 | アヴェイロ(Aveiro)大学 電子工学・電気通信課(の助教授個人によるもの?) (ポルトガル) |
プロジェクト内容 | 「4以上の偶数は、2つの素数の和にできる」というゴールドバッハ予想を10^18で実証する。(記述:2002.9.15) |
対応OS | Linux2.4〜(マスタープログラム&スレーブプログラム)&WindowsNT〜(スレーブプログラム) |
備考 | 自分のマシンについての詳細を電子メールで送信する必要が。実際に処理を行うスレイブプログラムは、CPUパワーは10^12でも最低400MHz(推奨1GHz) ,メモリは10^18では300MByte以上必要。 |
運営 | ドイツIBM開発社(IBM Deutschland Entwicklung GmbH)の研究員個人によるもの(?) |
プロジェクト内容 | リーマン予想を実証していくことで、リーマン予想(複素平面上におけるζ(ゼータ)関数の非自明な零点の実数部分は常に1/2である。)を証明する。 現在はドイツIBM開発社(IBM Deutschland Entwicklung GmbH)内のイントラネット内のみでクライアントソフトを公開していますが、いずれ一般公開の予定。(記述:2002.1.6) 一般公開開始。いずれは他のプロジェクトも行う模様。(記述:2002.8.27) |
賞金 | アメリカのクレイ数学研究所が100万ドルの賞金を提示しましたが、ページ内に、この件に関する記載は無いため、もらえないものかと。(記述:2002.1.6) 10$〜1000$の賞金を提示。もし100万ドルが得られたなら上位100名に与えるという賞金もあるが、解析した比率により金額が決まり、これは実質もらえない制度のようにも。(追記:2002.9.23) |
形式 | スクリーンセーバー,コマンドライン |
対応OS | Windows95〜(要JRE1.3以上),Linux,MacOSX,Java... |
運営 | 個人による模様 |
プロジェクト内容 | a1k + a2k + ... + amk = b1k + b2k + ... + bnkの形となる数を探す。(記述:2002.9.25) |
形式 | タスクトレイ常駐型,アプリケーションソフト |
対応OS | Windows |
備考 | まずは、a6 = b16 + b26 + b36 + b46 + b56 + b66となる数から探す。 |
運営 | 任意団体? |
プロジェクト内容 | ベータプロジェクトとして、コラッツ予想(Collatz Conjecture。正の整数xは、「xが奇数ならxを3x+1とし、偶数ならx÷2とする」を繰り返すと、xにどんな数を入れてスタートしても、必ず最後に1になるようである。というまだ明確に全て1になるか判っていない問題。3x+1問題と同じ)が正しいかどうか解いていく。(記述:2003.8.27) |
形式 | MS-DOSプロンプト |
対応OS | Windows (要.NET framework 1.1以上) |
備考 | 約一年までで終了する、行いたいプロジェクトを公募中(要:ソースコード)。(記述:2003.8.27) gridontap.comのドメイン登録者は、「プロジェクト運営者の管理を越える状況」として2003年7月末に終了したThe Neo Project,OperationProjectXのドメイン登録者と同じJustin Martin氏。(追記:2003.9.21) |
運営 | 個人による模様 |
プロジェクト内容 | 巨大な数での3x+1問題(正の整数xは、「xが奇数ならxを3x+1とし、偶数ならx÷2とする」を繰り返すと、xにどんな数を入れてスタートしても、必ず最後に1になるようである。というまだ明確に全て1になるか判っていない問題)を解いていく。(記述:2001.6.22) |
対応OS | Windows |
備考 | クライアントソフトはFTPからのダウンですが、anonymous(匿名・一般)での利用は無理な状態で、現在はダウンロードできないような... |
運営 | Bergen大学内 (ノルウェー) |
プロジェクト内容 | K-optimal lattice rules(日本語に訳すなら、最適化されたK格子定規?)を探す。(記述:2002.11.24) |
対応OS | Windows,MacOSX,Linux,FreeBSD,Solaris,OS/2,IRIX (要:Java v1.1以降) |
備考 | Win95と98では、runme.batの"start /low"の、" /low"を削除する必要が。それによりノーマルのプライオリティでクライアントソフトが走ることに。 |
運営 | 個人による模様 (ドイツ) |
プロジェクト内容 | Postの対応問題 (Post's correspondence problem)を解く。(記述:2001.7.10) |
賞金 | 無し |
対応OS | Dos,Linux,Solaris,FreeBSD |
運営 | 個人による模様 |
プロジェクト内容 | 1942年に大西洋で受信されたナチスドイツのエニグマ暗号(恐らく4ローター型)の3つのメッセージを解読する。 プラグボード(キーボードの配線を繋ぎ変えたもの。毎日変更していた)の設定を見つけるために、全てのパターンをテストし、その結果出来た解読文が、自然言語として「良好」かどうかSinkov統計的に判断しスコアリングを行ない、 hill climbingアルゴリズムにより最適解を見いだす。(記述:2006-03-10) |
形式 | Windows版はコマンドクライアントをバッチ起動(DOS窓)。 インストーラのバッチファイルはC:\EnigmaClientフォルダを作り、そこにインストールし実行するが、インストール時の自動起動では終了方法が存在しない模様で、終了するにはタスクマネージャからの切り離しか再起動の必要が。その後はバッチ起動でDOS窓が開き、CTRL+Cで終了可能。(記述:2006-03-10) |
対応OS | Win98〜,Linux |
備考 | 3つの暗号のうち2006年2月20日に1つ目の解読に成功。また2006年3月7日に2つ目の解読にも成功。(記述:2006-03-10) |
日本語での報道 | ・ナチスのEnigma暗号、分散型コンピューティングで解読(ITmedia 2006-03-04) |
運営 | 個人による模様 |
プロジェクト内容 | コリジョン(2つの異なる入力データから、同じハッシュ値が生成されること)を探すことで一方向ハッシュ関数MD5の不確実性の証明を試みる。(記述:2004.1.30) |
対応OS | Windows,Linux,MacOS,Solaris(CPU毎に動作クライアントが異なる模様。当方の環境ではCeleron1400MHz(Tualatinコア)は、Pentium-MMX版で動作), Javaアプレット(当方では動作確認できず) |
賞金 | CertainKey Cryptosystems社(ドイツ)が、一方向ハッシュ関数MD5において最初のコリジョンを発見したものに10000ドルを与えるMD5 Challenge開催。 MD5 Crackは、もし受賞できた場合、プロジェクト主催者に5000ドル。ユーザー投票による慈善団体へ3000ドル。発見した個人に1000ドル。発見した個人が所属するチームに1000ドルを振り分ける賞金規定を記載。(記述:2004-06-18) |
備考 | 2500万work unit,約2年で、コリジョンを1つ見つけることができると推定。(記述:2004.1.30) |
運営 | 数名の個人による模様 |
プロジェクト内容 | 公開鍵暗号RSA-576bitの解読。(記述:2003.2.23) |
対応OS | Linux,Windows下のDOS窓クライアントソフト |
賞金 | RSA社は576bitの公開鍵暗号に1万ドルの賞金を提示。賞金が得られたら解読者に2000$,最も多く解析した者に1000$を。(記述:2003.2.23) |
備考 | ドイツを中心としたグループに解読される。(slashdot日本のトピック) RSAttack576は敗北。(記述:2003-12-09) |
運営 | フィンランドのAbo Akademi大学生達のグループによる |
プロジェクト内容 | 1998年にdistributed.netによって解読された56bitDES暗号(総鍵数7京2057兆)を、また解く。(記述:2004-04-24) |
対応OS | Windows,Linux,MacOSX ,Solaris |
賞金 | 1998年に既に解読済みなので、当然出ない。(記述:2004-04-24) |
備考 | 2004年5月16日までの一ヶ月間のプロジェクト。(記述:2004-04-24) 62.55646%で正解鍵発見。発見者はFreeDCチームのmatrix_fan氏。(追記:2004-05-06) 同じ大学・同じ学科(暗号とネットワークセキュリティ)・異なる生徒で、再びDES解読プロジェクト登場。Help Crack DES。(追記:2004-05-15) |